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Use of a double-Regge-pole-exchange model to describe peripheral three-body final-state processes, es-
pecially at near-threshold values of the invariant mass of a pair of final-state particles, is described and
discussed. The fact is stressed that the model provides an understanding of the entire reaction, yielding
distributions in all kinematical variables. As an example, results are presented from a detailed comparison of
the predicted model distributions with data from pp ~ ps n++ at 28.5 GeV/c. One simple diagram involving
only Pomeranchon and pion exchanges is employed. Good agreement is obtained with the experimental dis-
tributions in invariant masses, momentum transfers, and various angles; in particular, the enhancement
near 1460 MeV in the (s n++) mass spectrum is well Gtted. Recent applications of the model to the Aq

region in xX~ mpE are reviewed. Also explored is the potential for extracting information on the pion
trajectory from three-particle final-state reaction data.

I. INTRODUCTION

q XTENSION of the Regge-pole-exchange model
'- ~ from the quasi-two-body domain to peripheral

inelastic processes involving several particles in the
final state has been studied by several groups in recent
years, ' 4 and phenomenological fits to processes with
three particles in the final state have been achieved. ' ' '
Some of these 6ts have been carried out within the
strict limits of applicability of the Regge-pole model,

namely, using only events in that region of the Dalitz
plot where the 6nal-state two-particle invariant masses
are relatively large. Whereas this limitation can evi-

dently be justi6ed by invoking the origins of Regge
theory, it has the unavoidable drawback, at presently
accessible energies and current bubble-chamber experi-
ment statistics levels, of leaving one with very few'

events to study.
On the other hand, recent work with 6nite-energy

sum rules' in two-body scattering demonstrates that
the parametrization appropriate to high-energy scatter-
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ing does provide an adequate semilocal-average descrip-
tion of low-energy phenomena. Thus one is motivated to
invoke the same type of result in the multiparticle
domain and to suggest that a double-Regge-pole-
exchange model may also, in restricted circumstances,
be analytically continued below its designed region of
evident validity and provide useful results when one or
both two-particle invariant masses become small. "

Some results of such an extension have already been
described by the author and successful 6ts to data from
several reactions have been published. ' ' In this paper
additional characteristic features of the double-Regge

approach are noted and compared with results from

non-Reggeized Deck-type models. " An important
aspect of the double-Regge approach which deserves

eInphasis is that it provides an understanding of the
entire three-body final-state reaction; it yields distribu-

tions in all relevant kinematical variables, not merely
6ts to the Dalitz plot or to one Chew-Low plot.

In Sec. II, the double-Regge-pole exchange hypoth-
esis for general three-particle final-state reactions in

the form given by Bali, Chew, and Pignotti is reviewed

and, in Sec. III, the rationale for extending its applica-
tion to near-threshold values in one of the final-state
two-particle invariant masses is made explicit. These
sections are intended to be fairly general and should

provide a basis for use of the model in the analysis of

an arbitrary three-particle reaction.
A particular example of the use of a double-Regge

model at high energy is focused upon in Sec. IV. The
reaction pp~ psr 6++ at 28.5 GeV/c is discussed in

some detail and distributions calculated from the
double-Regge model are compared with the several

"G. F. Chew and A. Pignotti, Phys. Rev. Letters 20, 1078
(1968); G. F. Chew, Comments Nud. Particle Phys. 2, 74
(1968).
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Y. Yam, ibid. 19, 546 (1967); U. Maor, Ann. Phys. (N. Y.) 41,
456 (1967);L. Resnick, Phys. Rev. 150, 1292 (1966). References
to previous work may be found in these papers.
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experimental distributions. " A choice is made of an
appropriate unique double-exchange diagram on the
basis of certain kinematic selections and then the
matrix element is parametrized in terms of two con-
strained parameters: a scale constant so and the slope
of the pion trajectory, assumed linear. By adjusting the
two parameters, a good fit to the data is obtained; the
pion-trajectory slope determined in this fashion is
o. '= 1.2 GeV ' and the scale constant is so =0.7 GeV',
both quite acceptable values and in agreement with
the parameters determined in an earlier modified
double-Regge-model fit to data on the same reaction
at 6.6 GeV/c. '

The invariant mass allowed to approach threshold
in this calculation is that of the (3r 5++) system. What
emerges is an acceptable 6t to the near-threshold
1460-MeV enhancement in this ma, ss spectrum without
the necessity of invoking a resonance interpretation of
the phenomenon.

In Secs. IV F and V, the more general features of the
double-Regge-model distributions and particular phe-
nomenological consequences of the model are empha-
sized and contrasted with results of the non-Reggeized .

Deck-type models.
Section VI is devoted to a discussion and interpreta-

tion of the results. Included are references to recent work
in which the model was applied to the processes
3r p —+ 3r p3p and coherent 3r+d —+ 3r+p'd, and agreement
achieved with the experimentally observed (1rp) mass
enhancement in the A ~ region. ' '

For all reactions studied, a linear pion trajectory with
an average slope of approximately 1.0 (GeV/c) ' seems
to yield best agreement with the data; the sense in
which the pion-trajectory slope is determined from this
analysis is discussed in Secs. IV 8 and IV F.

II. DOUBLE-REGGE MODEL

In this section the hypothesis of the double-Regge-
pole-exchange model' is brieQy reviewed for the
general-mass, three-body Anal-state process:

m1+m2 ~Pl+P2+P

Commonly, the assumption of the Regge approach is
that the model is strictly applicable only in that central
region of the Dalitz plot where the invariant mass of
each 6nal-state pair of particles is "la,rge."Whether one
uses the Toiler-variable route' or a procedure involving
a double Sommerfeld-Watson transformation, this
restriction obtains directly because only when the
invariant mass is large does the asymptotic expansion

S) S

Fio. 1, General double-Regge-pole-exchange diagram for the
process m1+m2~ p1+p+p2. The p; and q; are four-momenta
and the nz, and p,; are masses. s&

——(q1+q)', s2 ——(q&+q}',
t2= (q~ —p2)' t1= (q1—p1)' s= (p1+p2)' The o., denote Regge
trajectories.

yielding a ($;) '-type dependence on the subenergy
variable s, result naturally. The hypothesis asserts
that reaction (1) is dominated by a $um of diagrams of
the form given in Fig. 1.

Generally stated, in the sum there is a diagram for
each possible ordering at the three vertices of the 6nal
set of particles relative to the initial pair and, given an
ordering, for each unique pair of trajectories whose
quantum numbers allow coupling to the external par-
ticles. Although this statement means that the analysis
for a given process will require many diagrams, limiting
consideration to a restricted kinematic region reduces
the number of important diagrams. This procedure will
be discussed below, after the general situation is pursued
here.

For the sake of clarity, in this section all the external
particles in the diagram of Fig. 1 will be considered
spinless; a helicity-amplitude approach for the general-
spin case may be found in Ref. 4. For the specific
diagram given in Fig. 1, with the mass and trajectory
labeling indica, ted, the invariant amplitude is' ' ""
OR($)$1q$2&fl&32) Fl(fl)P($1' ' ')/$10] F3(fl)f2qM)

&&L($2 )/$23j F2(t2). (2)

In this expression, each of the functions F;(t;)
contain as factors (a) the propagator function for
trajectory u, (t~), (b) the signature factor for trajectory
n;, (c) necessary kinematic factors associated with the
coupling of m; and 31; to trajectory n, , and (d) the
reduced-residue function associated with the (m, ,y, ,n,)
coupling. Insofar as they can be determined from Regge
Gts to quasi-two-body processes, these four factors are,
in principle, all known quantities.

"The data were derived from a Brookhaven Qational Labora-.
tory Bubble Chamber Group study of pp interactions as reported
in P. L. Connolly et al. , Brookhaven National Laboratory Report
No. 11980 (unpublished); W. E. Ellis et al. , Brookhaven National
Laboratory Report No. 12673 (unpublished), submitted to the
Fourteenth International Conference on High Energy Physics,
Vienna, 1968; W. K. Ellis et al. , Phys. Rev. Letters 21, 697
(1968).

'4The metric use here is specified by q q=qo' —q q=m', where
q is a four-vector.

"At axed s, the invariant amplitude for reaction (1) is a func-
tion of four independent variables which are taken here to be the
set of Lorentz-invariant quantities de6ned in Fig. 1: two sub-
energy variables s& and s2 are two momentum-transfer variables
t1 and t2. The notation M(p1p2) denotes the invariant mass of the
pair of particles p, 1 and p2.
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In Eq. (2), the factors L($„' )/$;OJ
'

provide the
characteristic Regge form of the amplitude; the s;(l
are scale constants and, judging from two-body fits,
$,;O=1 GeV'. The quantity ($," .) is the numerator of
the cosh &;- va.riahlc of Bali, ("hew, a.nd Pignot. ti, '- the
denominator of which is absorbed into I'(t;) an, d
F(t&,t2,~) as a kinematic singularity. Explicitly, for the
general-mass configuration of Fig. 1,

An analogous expression for ($2 .) is obtained by
interchange of the subscripts 1 and 2 in Eq. (3). The
remaining factor in Eq. (2), the function F(t~,t~,cv),
describes the coupling of the two Reggeons ni and n2
at the central vertex to the emitted particle of mass p.
The variable ~, a natural rotation angle in the Toller-
analysis approach may be defined as' '

cos~=(»~&«~) (»2X~~)/I»~&&qrl I» &«2I (4)

where the three-vectors q; and p; are evaluated in the
I.orentz frame in which q =0, i.e., the rest frame of the
particle emerging from the central vertex. As this
equation indicates, co is the angle between the normals to
the (»~,q~) and (»2, q&) production planes, as viewed from
the frame of reference in which q=0.

The reaction amplitude 5R on the left-hand side of
Eq. (2) has been expressed as a function of the complete
set of independent variables ($,$~,$~, t~, t2). From the
purely kinematic point of view, cv is not a variable
independent of that set; as pointed out most explicitly
by Bali, Chew, and Pignotti, ' co is complementary to the
total energy variable s. Nevertheless, the range of co,

at fixed s, is not limited: It extends from 0 to x. More-
over, it is meaningful, even at fixed s, to express the
right-hand side of Eq. (2) in terms of cv because the two-
Reggeon —one-particle vertex function may, in general,
have a dynamical dependence on that variable. To be
sure, in order to perform an explicit calculation at fixed
s, the asserted dynamical dependence on co must be
transformed into a dependence on the chosen set of
independent variables. By the same token, because the
kinematic relationship between ar and any one of the set
($,$~,$,,t~, t2) involves all members of the set, there is
no reason to expect the distribution in the variable ~
to be isotropic, even if the function F (tq, t2,~) should be
entirely free of explicit ~ dependence.

The general multi-Regge analysis does not presently
specify the dependence of this central-vertex function on
co and on the t;; barring detailed model calculations, this
dependence must be sought out phenomenologically.
This situation is similar to that in the two-body Regge
approach in which one determines the t dependence of
the reduced-residue functions phenomenologically.

For a specific, peripheral three-particle final-state
reaction, given the set of relevant doubly peripheral
diagrams Pand their amplitudes in the form of Eq (2)j, .

one presumably has in the double-Regge model a com-
plete description of the physical process. Specifically,
one should be able to produce an adequate 6t for the
distributions in al/ possible momentum-transfer, final-
state two-partic]e invariant-mass and angular variables.
It sliouM be noted tl~at this approach is considerably
more ambitious than, for example, the Deck-type"
m.odels which have for the most part been limited to a
description of the Chew-I. ow plot in one momentum-
transfer and one invariant-mass combination for a given
reaction. The process pp-+ p~ 6++ is examined later
in this paper as an example of the complete fit stressed.
above.

The remarks of the previous paragraph are subject,
of course, to the qualification that the Regge model is
usually considered applicable only when the various
two-particle final-state invariant-mass values are large.
Section III is devoted to a discussion of the reasoning
behind extending the Regge model. to cover the entire
Dalitz plot.

III. EXTENSION TO SMALL SUBENERGIES

Motivation to apply the double-Regge-pole-exchange
model below its region of orthodox validity stems from
various sources. Empirically, it is interesting to con-
template for a typical process the fraction of data re-
maining after imposition of the orthodox restriction
that all final-state two-particle invariant masses be
"large. " Consider, for example, the reaction pp ~ pn7r+

at incident proton lab momentum 28.5 GeV/c. "Barely
4% of the events are left after elimination of those for
which either the mass M(n~+) (2.0 GeV orM(pm+)(2. 0
GeV. At current high-energy bubble-chamber experi-
ment statistics levels, therefore, fewer than 50 events
would be available for Regge-model analysis. '6 Whereas
consistency of the model with the data of this limited
sample is evidently essential, it is also valuable to
attempt to broaden the scope of inquiry.

An analytical understanding of the fact that approxi-
mately 96% of the data from pp ~ pn~+ at 28.5 GeV/c
is concentrated in that segm. ent of the Dalitz plot where
either M(n~+) (2.0 GeV or 3f(per+) (2.0 GeU is easily
given in terms of a doubly peripheral picture. This issue
has been explored quantitatively by various researchers,
often in the context of the Deck effect."An explicit
statement in terms of Fig. 1 is the following: Although,
on purely phase-space grounds, each s; may range
from (p+p;)' to ($'"—p;)', jAi, the graph in Fig. 1
implies that both t; are heavily weighted towards their
maximum (kinematic) limiting values (e.g. , t, weighted
near 0 if p;)nz, ) which, in turn, substantially kine-
matically distorts the phase-space spectrum. in the s;.
Indeed, the restriction of either t; to values near its
absolute kinematic limit has the effect of enhancing
small values of both s;. Consequently, there is an in-

"About 500 events appear necessary for an adequate study of
three-body final-state production models at fixed s.
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compatibility between the assertion of double periph-
erality and the orthodox requirement of a multi-
Regge model which would have the masses of all pairs
of final-state particles large.

Relaxation of the restriction to large s; finds support
in the many recent successful applications of finite-
energy sum rules, in two-body reactions, in which the
low-energy direct-channel resonance approxiniation
has provided a good description of various cross-channel
Regge trajectories. " The import of this development
for three-particle reactions has been emphasized by
Chew and Pignotti. "What emerges is the suggestion
that in using the double-Regge model one should expect
to achieve a reasonably good semilocal-average descrip-
tion of the data over the complete spectrum of s;
values. Certainly, sharp resonancelike detail cannot
result, but gross features of the s; and other distribu-
tions should be well reproduced. Particularly interesting,
therefore, from the point of view of phenomenological
application of the model, are investigations of those
particular three-body reactions which either display
essentially no resonant effects in any subenergy'~
variable, or display fairly structureless, broad enhance-
ments at low invariant-mass values for one pair of
final-state particles. Several examples of this latter
type will be discussed later in this paper.

Finally, the multi- Regge approach to several-
particle production' would be facilitated by a convincing
demonstration in the three-particle arena that the use
of a double-Regge approach at small subenergies is in
acceptable agreement with experiment, especially in
the sense of generating a suitable average over the
resonance region. The demonstration would help to
justify a multi-Regge description of multiple production
which ignores resonances and concentrates rather on

computing with diagrams that have only stable par-
ticles in the final state.

In order to restrict the number of diagrams treated,
the approach taken here was to relax the orthodox
Regge-theory limitation in the case of one subenergy
variable only. An example of a calculation of this type
is given in Sec. IV.

IV. APPLICATION TO pp —+ p~—L++

A doasble-Regge-model analysis for the reaction

pp —+ pvr A++ is described in this section in a manner

general enough to allow similar application, for example,
to pp ~ happ, ~p —+ m~p, mp —+ 7rpp, Ep —& sEA;
&P ~ 7rE*p, and analogous coherent processes. Pre-
dictions of the Regge model are compared here with
experimental distributions obtained by a Brookhaven
group studying proton-proton interactions at 28.5
GeU/c "

I An example of this type has been studied by G. Alexander
eI, al. , Phys. Rev. 177, 2092 (1969).

A. Choice of Diagrams

The essential simplifying conclusion reaclied in this
section is that by limiting the study to events for which
cV(pm. ))2.0 GeV, one may adequately represent the
data with a unique double-exchange diagram, given
in Fig. 3(a,), employing Pomeranchon and pion ex-
changes only. Other possible diagrams are judged to
provide contributions of secondary importance.

Since the incident particles in pp~ p7r A++ a,re
identical, there are a priori only three generic types of
double-Regge-pole-model diagrams which can be written
for this process, differing according to which final-state
particle is coupled at the central two-Reggeon —one-
particle vertex. The quantum number structure of two
of these types, with either x or 6 emerging from the
central vertex, is such that a Pomeranchuk trajectory
(P) can be accommodated as one of the pair of ex-

changed Reggeons. The third type of diagram, with a
proton emitted at the middle vertex, cannot admit P
exchange.

Separate consideration of diagrams with and without
P exchange is justified by various arguments. One line
of argument is based on the fact that for a diagram
containing P exchange the total cross section o- is
approximately s-independent, whereas 0 falls with s
if P exchange is not present. Another line of reasoning
relates to the fashions in which various exchanges
populate the allowed ranges of the various subenergies.
Because of the characteristic (s,/so)N' subenergy de-

pendence in the amplitude, the contribution of the
Pomeranchuk trajectory (Q,p=1) will dominate when

the associated subenergy is large. In fact, the P will

most effectively overcome the preference, discussed
earlier, of double-peripheral diagrams for small sub-

energies. On the other hand, the lower lying a given
trajectory is, the closer to threshold in the associated
subenergy will its contribution be felt.

In regard to the specific process under study here, the
restriction to events with M(pm. ))2.0 GeV should be
sufFicient to justify the disregard in first approximation
of all diagrams other than those containing P exchange.
The two remaining diagrams of interest are drawn in

Fig. 2, where the meson M and baryon 8 exchanges must
now be specified.

Quantum number requisites at the central vertex of

Fig. 2(a) demand that M have G parity (—1) and isospin

i; the obvious candidates are m and A~. The standard
nearest-singularity argument suggests that the m- con-

tribution is dominant over that of A ~ at small values of
the momentum transfer to the 6++. In addition, a
comparison of the on-mass-shell vrp elastic and vrp —+ A p
cross-sections shows that the strength of the ~~P coupl-

ing is a factor of 10 greater than the xAP coupling; be-
cause such coupling constants enter at the middle vertex
of the two diagrams, x exchange would appear to be
substantially favored. For Fig. 2(b), the argument is
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similar, with the conclusion being that the baryon 8
is the 5++ itself.

The diagrams of Fig. 2 contribute to overlapping
regions of phase space, and. a meaningful separation of
their contributions requires limitations on t& and t .
Kinematically, although the maximum value of t is
given by (sss~ —sr' )'=+0.6 GeV', a discussion based on
the distance from the baryon pole can be used to argue
that the magnitude of the contribution of Fig. 2(b)
should be suppressed in relation to that of Fig. 2(a);
interference questions are more delicate. The easily de-
rived relationship,

t~+ ta = t& s~a+—sss~ +tea +st ~, (5)

indicates, however, that interference is important only
in regions of phase space distant from both poles, for
example, where tg& —0.5 GeV2.

Finally, to facilitate comparison with the limited
quantity of data, only the pion —Pomeranchon diagram
given in Fig. 3 (a) was retained in the detailed computa-
tions. Because of the approximations discussed thus
far, certain qualifications as to the expected results are
evident. One should not expect to compute with this one
diagram the entire observed cross section. Moreover, in
adjusting free parameters associated with Fig. 3(a)
in an attempt to fit data, one will perforce be generating
some type of average over the background associated
with neglected diagrams.

B. Matrix Element

The invariant amplitude for the diagram in Fig. 3(a)
will be written as a function of the set of five Lorentz-

sp~

Sp~

rIG. 2. Diagrams containing Pomeranchuk-trajectory (P)
exchange which contribute to pp —+ px 6++; M denotes a meson-
type and J3 a baryon-type trajectory.

P

P

(b)

FIG. 3. (a) Dominant double-Regge-pole-exchange diagram for
the reaction pp —+ pmA++; n~ denotes the Pomeranchuk and a
the pion trajectory. The p, and q; are four-momenta. s„=(qj.+q)',
s ~ = (q&+ q)', 4 = (q2 —pa)', t„= (q&

—pr)', s = (p&+p, )'. (b) Triple-
exchange four-particle final-state diagram representing background
contribution.

invariant quantities defined in terms of the four-
momenta p; and q; as s= (pr+p2)', ta= (q2

—p2)',
t„= (qt —q&)', s.a= (q+q&)', and s„.= (q+q&)'. The dif-
ferential cross section for the process is

do = (2sr)
—'(4Fr) —'(P ~OR~')dq s, (6)

in which Fg equals the proton mass times the incident
proton lab momentum, and dy3 is the differential
element of phase space.

The complexities of spin analysis were set aside by the
adoption of the double-Regge-pole hypothesis for the
absolute square of the invariant amplitude 5K summed
over final spins and averaged over initial spins. '~
This effective neglect of spin dependence has the
practical consequence of reducing the number of
parameters involved in describing the momentum-
transfer (t„and ta) structure of the amplitude. In the
paragraphs below, a description is given of the fashion
in which this spin-averaged momentum-transfer de-
pendence was specified. The explicit dependence of the
amplitucle on the subenergy variables (and thus on the
trajectories) is not affected by the averaging, however,
since each helicity amplitude4 contains a common factor
(s ~ ) ~(s a ) which can be extracted to provide
the over-all dependence on the subenergies.

The discussion of the parametrization of P ~5R
~

' is
based upon the functions F, of Eq. (2). Because the
model yields no prescription for the co dependence of
Fs(ta, t~,co), such explicit variation was initially assumed



1572 EDMOND L. BERGER 179

absent here. This assumption seems justified by the
resulting fits, especially by the fit to the distribution in
itself, shown in Fig. 6(b).

In the attempt to reduce the number of free param-
eters, information obtainable from quasi-two-body
reaction studies was incorporated into the specification
of the ta and f„dependences of (+~DR~'). Because fits"
to two-body data conclude that the Pomeranchuk
trajectory has little slope, if any, the I' was chosen here
to be a fixed singularity, o.&=1.0. Thus there is no I'
propagator to be discussed. For definiteness, the scale
constant sp~ was set equal to 1.0 GeV', and then the
remaining t„dependence of the amplitude )in the
product Fi(t~)Fs(t„,ta) of Eq. (2)] was parametrized as
an exponential function determined from high-energy
vrp elastic scattering data, as follows: In the limit
t& —+ ns ', t„ is simply the invariant-momentum-
transfer variable for rrp elastic scattering and the func-
tion Fs(t„,ta) becomes an external residue; thus, in that
limit, the product Fr(1„)Fs(1„,1a) is proportional to
the t dependence of the amplitude for the elastic s.p
process. Under the assumption (1) that for small ta, the
t„dependence of the product Fi(t„)F,(t~, ta) differs
little from the on-shell case, and (2) that the Pomer-
anchuk trajectory is responsible for the rrP elastic dif-
fraction peak, "it is appropriate to set

~
Fi(&„)Fs(tr,ta)

~

'
=Fs'(ta)e ' srwhere Fs'(ta) is an unknown slowly vary-
ing function.

The discussion of the previous paragraphs may be
summarized in the following expression for the ampli-
tude" corresponding to the diagram of Fig. 3(a):

Q ~5K~'=EoG (ia)L(s a )/ss ]' ~(s ~ )'e"~. (7)

Details of the x coupling to pA as well as the rr propaga-
tor and the residual middle vertex tp dependence, pre-
viously denoted by Fs'(ta), are incorporated into
G (ia), and Xs is the over-all normalization constant.
Here

(s.a ) =s.a t, m, '+ ;,—ta '—(ma' m-, '—ta)— —
X (m.s—t„—ta), (8)

(s.„)=s.„—1a—res„'—-', (tie.'—t„—ta) .

The characteristics of the pion trajectory are, at
present, an issue of intense investigation in two-particle
scattering and, as such, it is hardly possible to present
a well-established expression for G (ta). In this study
the most natural assumptions consistent with Regge-
theory phenomenology were made. A linear pion trajec-

18 W. Rarita et al. , Phys. Rev. 165, 1615 (1968).
1~ At high-energy, the slope on a logarithmic plot of the harp

elastic der/dt~ is approximately the value 8.0 (GeV/c) ' used here;
see K.J.Foley et a/. , Phys. Rev. Letters 11,425 (1963);D. Harting
et al. , Nuovo Cimento 38, 60 (1965); Ref. 18.

"In employing (s &- ~ }~ and (sI ~ ~ ) &, the form given by
the numerator of the cosh(; variables of the Toiler analysis
(Ref. 1) is retained. See Eqs. (8) and (9). Especially, since the
continuation is made here to near-threshold values of s g, it is not
clear that this choice is preferable to simply using (s &) ~.

tory was adopted,

n =(ta —m ')n. ', (10)

do/dt= f(t) (s/ss)' &'&—' (12a)

Technically, a similar program could be undertaken in
this three-body reaction to separate the o. ' and sp

dependences of the amplitude; its results are incon-
clusive because of the limited quantity of data, how-
ever. The procedure requires performing the integra-
tions over the (s „. ) and t„vari bales in Eqs. (6) and

(7) to obtain a doubly differential cross section in the
s g and Iq variables,

d'o/dtad(s. a ) =G. (ia) [(s.a )/ss. ]' ~

XEPs,ta, (s a )]. (12b)

The function E in Eq. (12b) will be a known quantity.
If one then substitutes empirical data, at aPxed ta, for
the left-hand side of Eq. (12b), the (s a . .) dependence
ot the ratio EC 'd'o/dtad(s a ) will provide a value for
n (ia), at that ta, which is independent of ss and,

"Actually, most researchers studying quasi-two-body inter-
actions concern themselves only with small values of t and extract
factors such as (n+1) (n+2) from the PI' (1+n)] '. For examples,
see Ref. 18, and F. Arbab and C. B. Chiu, Phys. Rev. 147, 1047
(1966).

with the constant slope n ' left as an adjustable param-
eter; G (ta) was assumed to be given entirely by the
product of the Reggeized propagator and signature
factor with no other vertex structure'.

G (ta) = (s.n ')'/2(1 —cosrrn ) . (11)

It will be noted that for ia ~ m ', G (ia) approaches
the elementary OPE (one-pion-exchange) expression:
G.(ia) ~ (1a—m. ')-'.

The expression for G (ta) in Eq. (11) is not appro-
priate for large values of )ta( [i.e., )ta~ )1.0 (GeV/o)']
because, as it stands, it develops poles in the physical
region at o, = —2, —4, etc. These unphysical poles
could be eliminated by restoring to the right-hand side
of Eq. (11) the factor (r(1+n)] ', sometimes used in
Regge-pole phenomenological fits." However, because
pion exchange is dominant only for small t&, a cutoff in
the integration over the ta variable (and in the data)
is appropriate here for physical reasons, and the

difhculty is thus avoided.
Two adjustable parameters which may be varied to

achieve a fit to the shapes of the several experimental
distributions are embodied in Eqs. (7) and (10). They
are both associated toith the pion excharrge aspe-ct of the
diagram and are the slope o.

' of the pion-trajectory
function and the scale constant sp .

In one-Regge-pole-exchange fits to quasi-two-body
reaction data over a range of s values, it is possible to
isolate the trajectory function n(t) from the remaining
t dependence of the amplitude by fitting the differential
cross section, at fixed I for various s, to an expression
of the form
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moreover, of the parametrization of G (ta). As re-
marked, the limited statistics precluded using this
procedure except as a consistency check.

In view of the fact that one may express (ss ) '" as
expL —2(ta —m ')n ' inss j, it is evident that changing
so will serve to modify an inherent exponential damping
in the variable t&. Varying e ' will directly aRect the
shapes of distributions in both s g and t~. It is to be
expected, therefore, that for a limited statistics sample
of data various pairs of the quantities o. ' and so

wiB generate successful fits. As will be stressed later,
however, the data do require that n '=1.0 (Gev/c) ';
an elementary pion-exchange calculation fails in a
well-defined Inanner, which supports the argument given
here that the amplitude representing the data must
contain a factor such as (s q) ~ with a,(0.These issues
are discussed further in Sec. IV F.

C. Normalization

The normalization factor 1Vs of Eq. (7) was de-
termined by factoring the diagram of Fig. 3 (a) about
the pion-exchange line and considering the limit
ta ~ m '. The contribution to iVe of the pcs. vertex, in
that limit, may be evaluated in terms of the width I'
and mass mg of the 6++ as the factor"

gg' ——32~rma'{I (mg+m, )'—m.'j
XL(ma —m )'—m '))—'" (13)

The remainder of the diagram represents off-mass-
shell harp elastic diRraction scattering as may be recog-
nized if Eq. (7) is rewritten as

where DR „' is the amplitude for oR-shell ~p elas-

tic dier action scattering. In the diffraction-peak
approximation, "

Moreover, by using the optical theorem and assuming
a purely imaginary amplitude at t~=0, as is the case
for I' exchange, one may derive the expression"

g I
oil.„'

I

'= Ls,.—(m„+m.)')I s„.—(m„—m.)'j

where ot,.&, ~ is the 7rp total cross section. After com-
bining Eqs. (14) and (16), and comparing the result

2~ This may be derived by writing the invariant amplitude for
the ps' coupling, in Fig. 3(a), as M=Gu„(q2)Lp2 q2'j„N(ps),
where u„(q2) is a 16-component Lorentz-vector Dirac spinor, and
then evaluating G in terms of the width of the h. See, e.g, , J. D.
Jackson and H. Pilkuhn, Nuovo Cimento 33, 906 (1964).

23 Consult, e.g. , G. Kallen, Elenzerztary Particle Physics (Addison-
Wesley Publishing Co. , Inc. , Reading, Massachusetts, 1964),p. 18.

with Eq. (7) (at large s„and small t„and fa), one
obtains"

+0=2' 0'cot, ~~ . (17)

A factor of 2 was inserted into Eq. (17) because
antisymmetrization of the reaction amplitude is re-

quired, since the incident particles are identical. This
effect is properly obtained by adding to Fig. 3(a) a
diagram in which the incident particle momenta are
interchanged. Due to the peripheral nature of the
process, however, interference between the two dia-
grams is entirely negligible.

"If o.t ~ in Eq. (16) is expressed in mb, and all other units are
in GeV, in order for Eqs. (6) and (7) to yield a cross section in &b,
an additional conversion factor of 2.5 mb ' GeV 2 must be
supplied on the right-hand side of Eq. (16)."The mass of the o would have to be 450 MeV or less, however.

D. Data

A few remarks concerning the experimental distri-
butions are in order before actual fits are described.
When the mass spectrum of the final (p~+) combination
of data from the four-prong reaction pp —+ pp7r+s. is

plotted, a strong 6++ signal is evident. However, if. one
selects just those events from the broad enhancement
M(ps.+s )(1600 MeV, and then displays the (Pir+)
mass spectrum, it is less clear that a prominent 6++
component is present, partially because of limited
statistics and partially because of the fact that the
three-body mass selection already kinematically con-
strains the two-particle mass to overlap the 6++ band.
This ambiguity is disturbing because there are at
least two theoretical exchange mechanisms, alternative
to ps. 5++, which may also serve to generate a broad
low-mass (p7r+ir ) enhancement. One involves the
assumption that the process is actually pp ~ ppo, where
0. is an s-wave two-pion resonance. "Another is based
on the fact that the yield of a triple-exchange process
such as the one diagrammed in Fig. 3 (b) will be largely
in the region of small (ps.+7r ) mass values. In an
attempt to overcome both of these objections, the
assertion made here is that if a relatively narrow 6++
mass definition is used I M(ps.+) =1238&60j, one will
be left with data in which the true 6++ to background
signal is high. Note that the cut discussed earlier,
3I(ps. ))2.0 GeV, will remove double isobar events of
the A"*'6++ variety.

The data on the final state ps 6++ thus derived from

PP -+ pp7r+s is produced highly peripherally with small
momentum transfers to the 6++ and to the p. The
experimenters have noted, however, that there is a
biased loss from the present sample of those events
having

I /~ I
very small and associated with the (5++s. )

being in the forward hemisphere. "This loss is serious
primarily for

I t~I ~0.04 (GeV/c)', and consequently,
rather than limiting the study to the smaller, unbiased
sample with (6++~ ) backwards, all events were
retained.
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E. I'it to Data

Attention was focused principally on the limited high-
statistics region defined byss &4.0, s a &5.0, Ifaj &0.5,
I t„I ~& 0.5 (all units GeV'), where effects from diagrams
other than the dominant one are expected to be
negligible. Various pairs of the parameters n and sp ln
Eq. (7) provide acceptable fits in the sense of generating
sets of singly differential distributions whose shapes
agree with those of corresponding experimental distri-
butions. A maximum-likelihood fit to the data, in the
four-dimensional space of the two subenergy and two
momentum-transfer variables, produced the values
n '=0.8&0.2 GeV and sp =0.50~0.05 GeV'; how-
ever, the limited number of events involved and the
biases discussed earlier reduce confidence in this
determination. "As judged by eye, a somewhat better
fit to the shapes of the several distributions results from
the choice of o. '=1.2 GeV ' and sp ——0.7 GeV'. Figures
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~'I am indebted to W. Edwin Ellis for assistance with the
maximum-likelihood 6.t.

I'iG. 4. (a) Distribution in the invariant four-momentum
transfer squared to the 6++ for the reaction pp —+ px 6++ at
28.5 GeV//c. In the plot, there are 445 events for which s„-&40
GeV'. The solid curve is the Regge-model 6t with o. '=1.2 GeV '
and s0 =0.7 GeV . (b) Distribution in the irivariant four-momen-
tum transfer squared to the 6nal p for the process pp —+ pm. 6++,
for events in the region s„-)4.0 GeV' and 14 I

&0.8 (GeV/c)'.
In the 6rst bin, the dashed line corresponds to twice the number
of those events associated with backwards 6++~ production
only.

4—7 present computations of singly differential distribu-
tions using the latter pair of values. Naturally, the
same selections were made in the computation as taken
in the data; these are described in the captions. Good
fits also resulted for the doubly differential distribu-

tion d'o/dtads a, as well as for that in the variable

t = (q
—p,)', which should be sensitive to the neglected

baryon-exchange diagram's contribution. The values

determined for the pair of quantities a ' and sp are
well in line with the typical slopes and scale parameters
of Regge theory and, moreover, are in close agreement
with values obtained for the same parameters in a fit
to data, at the much lower momentum of 6.6 GeV/c. '

Because the constant term iVs in Eq. (7) cancels out in

the definition of the likelihood function, the maximum-

likelihood fit is to the shape of the distribution of
events in the (s a,s„,ta, f~) space only and not to the
absolute normalization. Similarly, the fits carried out,

by eye were to shapes only. Thus the degree of agree-

ment between model and data in terms of absolute
normalization is a measure of the extent to which the
diagram of Fig. 3(a), indeed, dominates the reaction.
The actual Regge-model curves shown in Figs. 4—7 were

obtained after multiplying Eq. (7) by the factor 0.95,
whereas the other pair of values (rr '=0.8 GeV ' and

ss ——0.5 GeV') yield a cross section which is 96% of the
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experimental value. 2~ Consequently, the absolute-
normalization aspect of the model is remarkably good,
as it was also at 6.6 GeV/c. '

F. Discussion of the Fit

It is evidently not possible to prove in a rigorous
sense that these data (or any data in the physical
region tJ&0) demand the existence of the pole singu-
larity postulated here in G (ta), Eq. (11), at the un-
physical point t&=m '. However, the good agreement
in absolute normalization and the reasonableness of
the values determined for e ' and so demonstrate
strong consistency of the pion-exchange aspect of the
model with the experimental situation. On the other
hand, it is important to inquire into the role played by
Reggeization in this problem.

The finite, positive value for the slope o.
' of the

trajectory of the exchange pion, operating through the
factor (s q)s in Eq. (7), is indeed essen/ial in order to
generate a distribution in the (ir 6++) invariant mass
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FH". 7. Distribution in the cosine of the 6++ production angle.
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Iqi I I pi I, where the three-vectors qi and ys are measured in the
frame of reference in which the (x 6++) system is at rest. The
selections imposed here were It„I &&0.3 (GeV/c)r, /rl(ir&) ~&1.6
GeV, and s~ ~&4.0 GeV'. The solid line is the Regge-model pre-
diction; the dashed curve is the model prediction with the selec-
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FIG. 6. (a) Distribution in the Treiman- Yang angle for pm 6++
defined in the Pir rest frame as P=cos 'L(piXqi) (psXqa)/
I yi Xqi I Ipi XqiI g, where the p, and q, in this expression are three-
vectors speci6ed by reference to Fig. 3 (a). (b) Distribution in the
Toiler angle, ~=cos 'I (piXqi) (piXqi)/IpiXqiI IpsXqsI1, mea-
sured in the rest frame of the m . The Regge model Qts the dis-
tribution without requiring explicit co dependence in the matrix
element. Both (a) and (b) contain 349 events for which s~ &4.0
GeV' and ItJ I &0.8 (GeV/c)'

"In obtaining the normalization, the values F= 420 MeV and
af z, „——28 mb were used in Kqs. (12) and (16). See also Ref. 24.
The data correspond to a cross section of 0.87 pb /event.

whose peak. position and full width at half maximum
are in agreement with the data, and in order to produce
the type of asymmetry observed in the distribution in
the Trieman-Yang angle, Fig. 6(a). These two features
of the Reggeized approach may be recognized most
directly by contrasting the form and results of this
model with those of an elementary one-pion-exchange-
diflraction-scattering (OPE-DS) or Deck model, "which
the Reggeized model essentially becomes in the limit
0. '~0.

In the OPE-DS model, one replaces Eq. (7) by"'s

g I0T(I o pz'=&s(I~ m.')-'—Ls,. (m„+—m.)sj
XLsi„—(mi, —m )'j expL8t~+) (ta —m ')j. (18)

In Eq. (18), les has the same value given previously
in Eq. (17), and the option of a form factor
expL) (ts —m ')jhas been explicitly introduced (without
it the experimental distribution in tg cannot be fitted
using OPE-DS). At small values of ttaj, the essen/ial
dQ"erence between Eq. (1h') and Eq. (/) is the presence
in, Eq. (/) of ]he factor (s a )'~..

At the energy being considered here, Eq. (18) will

yield the same curve for the distribution in t& as that
given by the Regge model, shown in Fig. 4(a), if
)~—=1.0 GeV ' in Eq. (18). With )~ thus fixed at 1.0
GeV ', Eq. (18) was used to compute the expected
OPE-DS distribution in the ~ 6++ invariant mass.
The results of the two models are compared in Table I.
Whereas the Regge model is able to adequately 6t the
distributions in both tg and s ~, the OPE-Ds model

"Additional dependence on t~, associated with the spin structure
of the 6++, was evaluated at tg=m ' and absorbed into Eo.
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TABLE I. Comparison of Regge- and OPE-model predictions
with data for the location (M0) of the peak and full-width at
half-maximum I' of the distribution in the invariant mass of the
(m 6++) system, for two values of the cutoff in the integration
over the variable t~. The last line contrasts the predictions for the
distribution in the Treiman-Yang angle. The OPE model con-
tains a form factor, as described in the text, with X= 1.0 (GeV/c) '.

310, (ts (0.5
Mp, 4 (1.0
F; tg (05
F; tg &10
Treiman- Yang;

[tsar

(0.8

OPE-DS Double Regge pole
(X=1) (n '=1.2; ss.=0.7)
yreV) (MeV)

1500
1580
420
540

Plat

1480
1520
280
380

41'P& asym.

Experimental
(MeV)

1480
1500
200
320

See Pig. 6(a)

s a ——A (ta, t~,s„)+cosp B(ta, t„,s~ ), (20)

which shows that a dependence in the amplitude on

(even with form factor) can reproduce only one of the
two.

Phase-space threshold effects, of course, compel the
distribution in s ~ to vanish at threshold and, as dis-
cussed elsewhere, the peaking of the cross section at
near threshold values of s q is largely a kinematic reAec-

tion of the suppression of large values of t~ and t„
in the doubly peripheral diagram. However, Reggeiza-
tion enhances the low-mass peaking by directly provid-
ing an s q-dependent factor in the matrix element whose
effect is to further suppress large values of s z. Analyti-
cally, this narrowing of the low-mass enhancement can
be understood by observing that the (s a)' term in
Eq. (7) is roughly approximate to (s a) " because
a = (ta —m ')a„' and the peak in the ta distribution
occurs at ts= —0.12 (GeV/c)' /see Fig. 4(a)j.

In the last row of Table I and in Fig. 6(a), the pre-
dictions of the two models for the distribution in the
Trieman-Yang angle p are contrasted. The OPE-DS
model produces a perfectly Rat distribution in the
variable p, whereas the Regge model yields an asym-
metry about 90' and a peaking toward 0' similar to
that observed in the data. In this work, the computed
asymmetry aboutg90' is defined by

da./d q (0') —do./d q (180')A=-
do/d p(0')+do/d p(180 )

The physical reason for the large asymmetry deseloped

by the Itegge model rests simply, again, in the factor
(s a)' '"'; this coupling of the adjacent momentum-
transfer t& and subenergy s & variables may be re-
expressed in terms of momentum variables and implies
a correlation of the momenta of the particles in the
final state Stated ot.herwise, the sets (s,s~, tts, t„,s a) and

(s,s„„,t&,t»p) are two complementary sets of inde-

pendent variables in terms of which the amplitude may
be expressed. They are related through an expression of
the form

s q leads, in general, to a nonisotopic y distribution.
Absence of s.s or &p deP'endence in (g ~0&j') automatically

leads to a perfectly flat distributionin the q earnable.

The asymmetry about 90 in the p distribution, quite
sensitive to the value of o. ', increases as 0.

' increases.
Moreover, for fixed o. ', it is also an increasing function
of the variable )ta) because [a [ increases with )tts);
for example, if instead of restricting the tq integration to
values

~
ta

~

~& 0.8 (GeV/c)', as in Fig. 6(a) and Table I,
one chooses the cut

~
tts~ &~0.5 (GeV/c)', the predicted

asymmetry is reduced to 28%. On the other hand, a
fixed constant-power behavior in the variable s„q would

lead to an asymmetry which is independent of tg. The
data at both 6.6 GeV/c' "and 28.5 GeV/c give definite
evidence for an increase in the asymmetry as one takes
progressively larger cuts in

~
ta ~; the data are thus highly

suggestive of a mechanism whereby the spin of the
exchanged object is a function of t~.

The validity of the conclusions presented in the above
paragraphs does not rely upon the very simple form
chosen for the ta dependence of (P ~BR~'), namely, the
function G, (ta) in Eq. (11). Other, more compli-

cated, expressions (for example, G (tts) multiplied by
LI'(1+a)] ') were tried, with the result that although

sp is forced to change, acceptable fits to the s & and p
distributions definitely require that a,'= 1.0 (GeV/c) '.
The criticism may be leveled, of course, that one is

misapplying the pion-exchange concept when using it
as far out in ta as ~ts~ =0.5 (GeV/c)'. However, even

when one restricts the analysis to ~t&~ (0.2 (GeV/c)'
= 10m ', the experimental anisotropy in the &p distribu-
tion is evident and requires that n '=1.0 for its inter-
pretation within the context of this model. It would be
valuable to pursue this matter of the pion-trajectory
parameters by analyzing high-statistics data on the
several reactions listed at the beginning of Sec. IV.

In the remainder of this section, additional comments
are made regarding the distributions presented in

Figs. 4—7. The discrepancy between the Regge fit and
the data for values of ~t„~ (0.04 (GeV/c)', shown in

Fig. 4(b), is attributable to the bias, discussed earlier,
which results in a loss of events at small

~
t~

~

when the
(t1++ir ) system is in the forward hemisphere. Indeed,
the dashed histogram in the region

~ t„~ (0.04 (GeV/c)'
corresponds to twice the number of events present in

the backwards (6++sr ) sample; this bias is not serious

in the remainder of the
~
t~

~

distribution. Because events
with

~
t„~ -- 0.04 (GeV/c)' occur preferentially with

small values of s q, this bias explains, in part, the
apparent normalization discrepancy in the distribution
in the s a va, riable, shown in Fig. 5(a). The eRects of
the bias on the other distributions is negligible. The
distribution in the s„variable LFig. 6(b)j shows that
the (s~ .)' factor in Eq. (7), characteristic of
Pomeranchon exchange or diffraction scattering, is a

'9 The definition of q used in Ref. 6 differs slightly from that in
this work; they are related by rp(6. 6) = p{28.5)+m.
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good representation of the over-all s~ dependence for
values s~ ~&4.0 GeV', as asserted earlier. The agree-
ment at the lower end of the scale can be improved by
the addition of a diagram with P' exchange, for example;
moreover, a mild slope" (n„'=0.3) for the Pomeranchuk
trajectory results in better agreement of the shape of
the calculated distribution with the data at the upper
end of the spectrum. The agreement evident in Fig. 6 (b)
suggests that the choice made here to ignore explicit or

dependence in the two-Reggeon —one-particle vertex
is quite consistent with the experimental situation.

The severe cuts
~
t~~ (0.3 (GeV/c)' and M(7rh) 1.6

GeV in Fig. 7 were chosen in order to focus on the region
of the low-mass (mt1) enhancement. The additional cut
s„„~&4.0 GeV2, necessary in order to eliminate double-
isobar events, removes events in the region cos8~) 0.5.
The data show evidence for a depletion of events for
cose&( —0.5; these events are statistically associated
with values

~
tz j )0.5 (GeV/c)'. The discrepancy

between the calculated curve and the data for
cos0g & —0.5 is perhaps indicative of interference
between the principal diagram, Fig. 3(a), and others
(such as the 6++ exchange possibility discussed earlier)
in the region ~ts~ )0.5 (GeV/c)'. Both the calculated
curve and the data become peaked towards cos8a ——+1
for larger values of 3f (7rh).

G. Conclusions

The over-all fit to the data supports the double-
Regge-pole-exchange approach to three-particle pro-
duction and, in particular, calls for the exchange of a
Reggeized pion whose average slope in the momentum-
transfer range 0)t) —0.5 (GeV/c)s is approximately
1.0 GeV '. Diagrams other than the dominant one
shown in Fig. 3(a) provide negligible contributions to
the process pp~ p~ t)++, at least in the limited
domain defined at the beginning of Sec. IV E. The
low-mass (7r 6++) enhancement and related distribu-
tions are adequately fitted without requiring any
explicit (ps+ad ) resonance production. The neglect of
spin eGects in the spin-average approach taken here,
especially as regards the 6++, would not appear to alter
these conclusions in view of the fact that the coupling
of the pion to the ~ helicity states of the 6 is known from
quasi-two-body final-state data to be a small effect."

V. FEATURES OF THE MODEL

The discussion in Sec. IV F regarding the s q and p
distributions underscored some general aspects of the
Regge-model matrix element and fits. In this section,
a few additional features will be stressed.

A. Slopes in the Momentum-Transfer Variable

A particularly interesting consequence of the doubly
peripheral approach becomes evident when one ex-

"G. Fox (private communication}.

amines the distribution in the variable t~ for various
choices of the invariant mass M a of the (n=t)++)
combination. In a missing-mass type of counter experi-
ment, these are essentially the two relevant variables
when one triggers on a fast proton"; they are also, of
course, the usual variables in a Chew-I. ow plot. The
calculated doubly differential distribution d o/dt„d. M a
is in fact well approximated in the region ~t„~ 0.3
(GeV/c)' by the expression

d'o/dt~dcV a= exp(a+bt~), (21)
where the parameters a and b, although independent of
t„, depend strongly on 3f &. In Table II, values of b
for various M g are presented. Also given in this table
are the calculated values of b versus M(rt7r+) for the
recently published study of pp —+ pled+ at 28.5 GeV/c. '

It will be noted that for values of 3II q or 3f near
their respective thresholds the calculated (output)
value of b is twice the elastic-scattering value of 8.0
(GeV/c) ' used as input in Eq. (7). This substantial
increase may be described as kinematical "feed-through"
from the right to the left in the diagram of Fig. 3(a);
any dependence on the variable tz in Fig. 3(a) reflects
itself kinematically as a dependence on the variable
t~. It is the steeply falling (tz —m ') ' character of the
ta variation in either Eq. (7) or Eq. (18) which tends to
force the t~ dependence to be sharper than the input
e"~ variation. The dependence in the matrix element
on the subenergy variables, however, subsequently
modulates this effect and contributes to the variation
of b with M g.

Such rapid variation of the slopes (on logarithmic
plots) of momentum-transfer distributions with the
mass of produced states is a general feature of the
double-peripheral approach to three-particle production.
Effects of this type have been observed experimentally,
notably in the missing-mass type of counter experi-
ments" and also by several bubble-chamber groups. ""
Walker, in particular, has described such a variation
as an important aspect of the diGraction-dissociation
mechanism. ""It is evident that one must be cautious
in interpreting such systematic variation of the
momentum-transfer dependence with invariant mass;
the above analysis shows that the effect is not obviously
correlated with resonant behavior. It is the pion-pole
term in the t2 variable that causes the extra steep
fall-oB in tj.

B. Energy Dependence

Subject to the provision that the s„ integration is
carried out over its full range, the Regge-model matrix

"E.W. Anderson et al. , Phys. Rev. Letters 16, 855 (1966);
G. Belletini et al. , Phys. Letters 18, 167 (1965); J. M. Blair
et al. , Phys. Rev. Letters 17, 789 (1966};K. J. Foley et al. , i'.
19, 397 (1967)."J.Bartsch et al. , Phys. Letters 278, 336 (1968).» W. D. Walker et al. , Phys. Rev. Letters 20, 133 (1968);
A. F. Garfinkel et al., University of Wisconsin Report, 1968
(unpublished}."M.L. Good and W. D. Walker, Phys. Rev. 120, 1857 (1960).
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pp~ p~ ~++
31(~n) (GeV) b (GeV/c) ' pp ~ p~+n

3II(7m) (GeV) b (GeV/c) '
1.40
1.50
1.60
1.80
2.00

14.0
11.5
10.0
8.0
5.2

1.10
1.20
1.30
1.50
1.80

18.0
12.5
95
7.0
4.5

TAsr, z II. Mass dependence of the differential cross section for
pp —+ pw 6++ and pp —+ pm-+n at 28.5 GeV/c, obtained from
doubly peripheral pion —Pomeranchon model; b is dered in
Eq. (21) of the text.

To include such a diagram along with that of Fig. 3(a)
would likely result in the same type of double counting
that is involved in two-body processes if one adds
direct-channel resonance terms to a so-called back-
ground formed of Regge-pole-exchange contributions.
This last remark is qualitatively evident if one regards
the ~ 6++ final state in Fig. 3(a) as resulting from the
"quasi-two-body" interaction between the Pomer-
anchon and the proton Ps.

VI. DISCUSSION

element, Eq. (7), yields a distribution in the (s- 6++)
invariant mass whose peak position and full-width at
half-maximum are essentially independent of incident
energy from 6.0 to 100 GeV/c. The total cross section
is likewise approximately energy-independent. Similar
statments apply to the calculation of pp~ peer+ re-
ported earlier. 7

C. Cuts in s~,

The restriction in Sec. IV to the study of only those
events for which s„~&4.0 GeV' is by no means funda-
mental. However, if one desires to represent data at
smaller values of the s„variable, then diagrams in
addition to that given in Fig. 3(a) must be included in
the computations; these would include (but are not
limited to) diagrams of the same topology as that given
in Fig. 3 (a) but with P replaced by P' or p, for example.
Evidently this argument does not imply the absence of
a P contribution below s„=4.0 GeV'; rather, it sug-
gests, supported by Fig. 4(b), that other effects are
more prominent there. By the same token, if one chooses
to represent the data by using only the diagram shown
in Fig. 3(a), whether in the Regge form or in the non-
Reggeized OPE-DS" model, then either a cut in the
s„variable is in order or some other subtraction should
be made to eliminate the non-Pomeranchon effects.
This last point is often ignored by researchers who use
a non-Reggeized version of Fig. 3 (a) for the purpose of
calculating "background" contributions to processes
such as 7rp-+ Arp or E'p —+ E**p.

D. Direct-Channel Diagrams

By way of emphasizing that the model discussed in
this paper is one which seeks to interpret peripheral
three-particle 6nal-state processes entirely in terms of
cross-chaeeel exchange contributions, it should be
noted that it is inappropriate to consider including a
diagram of the direct-channel variety, representing
pole-term propagators in one of the sebeeergy variables
Dor examples, see Fig. 1(A) of the Ross-Yam analysis"
or Fig. 6(b) of the Resnick paper"j. For the
PP~ P~ 5++ process studied in this paper, a direct-
channel diagram, of the type to which reference is
being made here, is one representing pp diffraction
scattering with one of the final-state (off-mass-shell)
protons subsequently dissociating into a (5++m ) pair

In several recent analyses, a double-Regge-pole-
exchange approach of the type described here has
provided good agreement with all experimental dis-
tributions even at near-threshold values of the invariant
mass of a final pair of particles in a three-body finaI-
state process. In addition to the proton-proton inter-
action studies already mentioned, in which data in the
region of the 1400-MeV nucleon-isobar-type enhance-
ment has been fit, data from the reactions 7rp ~ s.pp at
13.0 and 20.0 GeV/c' and coherent s.d~ vrpd at 8.0
GeV/c ' are also in agreement with calculations based on
a Reggeized pion —P orner anchon doubly peripheral
diagram. These last two reactions give evidence for a
broad Ar (mass=1100 MeV) enhancement in the 7rp

mass spectrum which the model adequately describes.
Moreover, a partial-wave analysis of the Regge-model
amplitude predicts that 85% of the calculated Ar
enhancement is an s-wave (l=0) J~= 1+ (s-p) system,
in good agreement with the fraction determined
experimentally in the 8.0-GeV/c study. '

It is inappropriate, however, to conclude from the
results of these studies that either the 2 r or the 1V*(1400)
effects observed in the above reactions are not reso-
nances in the usual sense. For, whereas there has been
no conclusive demonstration as yet that a cross-channel
Regge-pole-exchange description and a direct-channel
resonance interpretation are perfectly dual" alternative
modes of understanding, a growing body of information
points in that direction. In quasi-two-body scattering,
the finite-energy sum-rule" approach has demonstrated
that the appropriate sum over Regge-pole-exchange
contributions in the cross channel provides an adequate
semilocal-average description of the insaginary part of
the scattering amplitude, expressed in terms of direct-
channel resonance contributions. Moreover, partial-
wave analyses performed on the (asymptotically valid)
Regge form of the amplitude and accepted even in the
intermediate-energy resonance domain have demon-
strated that resonance like Argand-diagram circles are
present in the Regge amplitude. "

Based on the fact that no poles in the direct-channel
energy variable are present in the asymptotic Regge

'"" C. Schnlid, Phys. Rev. .Letters 20, 689 (1968); P. &. B.
Collins, R. C. Johnson, and K. Squires, Phys. Letters 278, 23
(1968); C. B. Chiu and A. Kotanski, CERN Report Xos. 907
and 939, 1968 (unpublished); V. Alessandrini et al., CERN
Report No. 922, 1968 (unpublished).
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amplitude, objections have been raised to the inter-
pretation of these circles as manifestations of resonances.
Schmid countered these objections using an analogical
reference to the Stirling approximation to the F func-
tion"; however, a precise judgment on the duality issue
awaits the development of a unique representation of
the scattering amplitude, valid at all energies and having
Regge asymptotic behavior. Some progress in this
regard is evident in a recent proposal by Veneziano. "

The relevance of this discussion to three-particle
final-state problems is evident upon observing that
insofar as the final state z 6++, for example, is con-
cerned, it can be regarded as being the end product in
Fig. 3(a) of a quasi-two-body proton —Pomeranchon
interaction, with pion exhcange beirig the dominant
cross-channel exchange mechanism. Thus, in effect,
Reggeization has introduced a third, but possibly
unifying, interpretation to the yet unsettled resonance
versus kinematic enhancement question surrounding
the experimental status of the A t, 1V*(1400), and
Es-s. Q bump" effects. This controversy has the
practical consequence of making it dificult to quote
unambiguously values for "resonance" cross sections in
these mass regions.

"G. Veneziano, Nuovo Cimento 57A, 189 (1968)."G. Goldhaber et a/. , Phys. Rev. Letters 19, 972 (1967},and
references therein.

The theoretical status of the calculations described
here is somewhat primitive. Most fundamental, of
course, is the matter of the use, at nonasymptotic values
of s g, of the unmodified Regge form of the amplitude
given in Eq. (7). Present justification relies on duality-
type arguments" and on the not inconsiderable agree-
ment with data on different reactions over a wide
energy range. Further progress in this regard awaits the
development, for example, of a Veneziano36 type of
representation for 6ve-body processes which would
have Regge asymptotic behavior in the two subenergy
variables but would provide a better near-threshold
dependence on these variables.
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